### GATE 2024 Syllabus

# GATE Exam 2024 Syllabus For Civil, Electrical,Electronics And Mechanical

## GATE 2024 Civil Engineering Syllabus

**Engineering Mathematics**

**Linear Algebra:** Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors. Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima and minima; Taylor series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities; Directional derivatives; Line, Surface and Volume integrals.

**Or****dinary Differential Equation (ODE):** First order (linear and non-linear) equations; higher order linear equations with constant coefficients; Euler-Cauchy equations; initial and boundary value problems.

**P****artial Differential Equation (PDE):** Fourier series; separation of variables; solutions of one- dimensional diffusion equation; first and second order one-dimensional wave equation and two- dimensional Laplace equation.

**P****r****obability and Statistics:** Sampling theorems; Conditional probability; Descriptive statistics – Mean, median, mode and standard deviation; Random Variables – Discrete and Continuous, Poisson and Normal Distribution; Linear regression.

**N****umerical Methods:** Error analysis. Numerical solutions of linear and non-linear algebraic equations; Newton’s and Lagrange polynomials; numerical differentiation; Integration by trapezoidal and Simpson’s rule; Single and multi-step methods for first order differential equations.

**Structural Engineering**

**E****ngineering Mechanics:** System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system.

**S****olid Mechanics:** Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses.

**S****tr****uctural Analysis:** Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.

**C****onstruction Materials and Management:** Construction Materials: Structural Steel – Composition, material properties and behaviour; Concrete - Constituents, mix design, short- term and long-term properties. Construction Management: Types of construction projects; Project planning and network analysis - PERT and CPM; Cost estimation.

**C****oncrete Structures:** Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams.

**S****t****eel Structures:** Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections - simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis - beams and frames.

**Geotechnical Engineering**

** Soil Mechanics: **Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability - one dimensional flow, Seepage through soils – two - dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition; Compaction of soils; One- dimensional consolidation, time rate of consolidation; Shear Strength, Mohr’s circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths.

**Foundation Engineering:** Sub-surface investigations - Drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories - Rankine and Coulomb; Stability of slopes – Finite and infinite slopes, Bishop’s method; Stress distribution in soils – Boussinesq’s theory; Pressure bulbs, Shallow foundations – Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction.

**Wa****ter Resources Engineering**

**Fluid Mechanics:** Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag.

**H****y****draulics:** Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics - Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles.

**H****y****drology:** Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface run-off models, ground water hydrology - steady state well hydraulics and aquifers; Application of Darcy’s Law.

**Irr****i****g****a****t****i****on:** Types of irrigation systems and methods; Crop water requirements - Duty, delta, evapo-transpiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures.

**Environmental Engineering**

**W****a****t****e****r and Waste Water Quality and Treatment:** Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment.

Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications.

**Ai****r Pollution:** Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits.

** Municipal Solid Wastes : **Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

**Transportation Engineering**

**T****r****a****nsportation Infrastructure:** Geometric design of highways - cross-sectional elements, sight distances, horizontal and vertical alignments.

Geometric Design of Railway Track – Speed and Cant.

Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design. Highway Pavements: Highway materials - desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes

**T****r****a****f****f****i****c Engineering:** Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster’s method; Types of intersections; Highway capacity.

**Geomatics Engineering**

Principles of surveying; Errors and their adjustment; Maps - scale, coordinate system; Distance and angle measurement - Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves Photogrammetry and Remote Sensing - Scale, flying height; Basics of remote sensing and GIS.

**Chemical Engineering**

**Engineering Mathematics**

*:*Matrix algebra, Systems of linear equations, Eigen values and eigenvectors. Calculus: Functions of single variable, Limit, continuity and differentiability, Taylor series, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s theorems.

**Di****ff****erential Equations :** First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation.

**C****omplex Variables :** Complex number, polar form of complex number, triangle inequality.

**P****r****obability and Statistics :** Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions, Linear regression analysis.

**N****umerical Methods :** Numerical solutions of linear and non-linear algebraic equations. Integration by trapezoidal and Simpson’s rule. Single and multi-step methods for numerical solution of differential equations.

**Process Calculations and Thermodynamics**

Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb’s phase rule and degree of freedom analysis.

First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.

**Fluid Mechanics and Mechanical Operations**

Fluid statics, surface tension, Newtonian and non-Newtonian fluids, transport properties, shell- balances including differential form of Bernoulli equation and energy balance, equation of continuity, equation of motion, equation of mechanical energy, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, velocity profiles, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.

**Heat Transfer**

**Mass Transfer**

Fick’s laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption, membrane separations(micro-filtration, ultra-filtration, nano-filtration and reverse osmosis).

**C****hemical Reaction Engineering**

Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, kinetics of enzyme reactions (Michaelis-Menten and Monod models), non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis; rate and performance equations for catalyst deactivation

**Instrumentation and Process Control**

Measurement of process variables; sensors and transducers; P&ID equipment symbols; process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; transducer dynamics; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

**Plant Design and Economics**

Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as heat exchangers and multistage contactors.

**Chemical Technology**

Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

**Computer Science and Information Technology**

**Engineering Mathematics**

**Di****screte Mathematics:** Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions.

**Linear Algebra: ** Matrices, determinants, system of linear equations, eigenvalues and eigenvectors, LU decomposition.

**C****alculus:** Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration.

**P****r****obability and Statistics:** Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem.

**Digital Logic**

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

**Computer Organization and Architecture**

Machine instructions and addressing modes. ALU, data‐path and control unit. Instruction

pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage;

I/O interface (interrupt and DMA mode).

**Programming and Data Structures**

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

**A****lgorithms**

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm

design techniques: greedy, dynamic programming and divide‐and‐conquer. Graph traversals,

minimum spanning trees, shortest paths

**Theory of Computation**

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.

**Compiler Design**

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimisation, Data flow analyses: constant propagation, liveness analysis, common subexpression elimination.

**Operating System**

System calls, processes, threads, inter‐process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory.File systems.

**Databases**

ER‐model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints,normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

**C****omputer Networks**

Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit- switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email.

**Electronics and Communications**

**Engineering Mathematics**

**Linear Algebra: **Vector space, basis, linear dependence and independence, matrix algebra, eigenvalues and eigenvectors, rank, solution of linear equations- existence and uniqueness.

**C****alculus :** Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series.

**Di****ff****erential Equations:** First order equations (linear and nonlinear), higher order linear differential equations, Cauchy's and Euler's equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problems.

**V****ector Analysis:** Vectors in plane and space, vector operations, gradient, divergence and curl, Gauss's, Green's and Stokes’ theorems.

**C****omplex Analysis:** Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, sequences, series, convergence tests, Taylor and Laurent series, residue theorem.

**P****r****obability and Statistics:** Mean, median, mode, standard deviation, combinatorial probability, probability distributions, binomial distribution, Poisson distribution, exponential distribution, normal distribution, joint and conditional probability.

**Networks, Signals and Systems**

**Ci****r****cuit Analysis:** Node and mesh analysis, superposition, Thevenin's theorem, Norton’s theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of network equations using Laplace transform. Linear 2-port network parameters, wye-delta transformation.

**C****ontinuous-time Signals:** Fourier series and Fourier transform, sampling theorem and applications.

**Di****screte-time Signals:** DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay.

**Electronic Devices**

Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.

Carrier transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson and continuity equations.

P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell.

**A****nalog Circuits**

**Di****ode Circuits:** clipping, clamping and rectifiers.

**B****JT and MOSFET Amplifiers:** biasing, ac coupling, small signal analysis, frequency response. Current mirrors and differential amplifiers.

**O****p-amp Circuits:** Amplifiers, summers, differentiators, integrators, active filters, Schmitt triggers and oscillators.

**Digital Circuits**

**N****umber Representations:** Binary, integer and floating-point- numbers. Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders.

**S****equential Circuits:** latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.

**D****ata Converters:** sample and hold circuits, ADCs and DACs. Semiconductor memories: ROM, SRAM, DRAM.

**C****omputer Organization:** Machine instructions and addressing modes, ALU, data-path and control unit, instruction pipelining.

**Control Systems**

Basic Control System Components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

**Communications**

**R****andom Processes :** Autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems.

**A****nalog Communications:** Amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers.

**I****n****f****o****rm****a****t****i****on Theory :** Entropy, mutual information and channel capacity theorem.

**Di****g****i****t****al Communications :** PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR and BER.

Fundamentals of error correction, Hamming codes, CRC.

**Electromagnetics**** M****a****xwell's Equations:** differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.

**Pl****ane Waves and Properties :** reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.

**T****r****a****nsmission Lines :** Equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart.

Rectangular and Circular Waveguides, light propagation in opticalfibers, dipole and monopole antennas, linear antenna arrays.

**Electrical Engineering**

**Engineering Mathematics**

**Linear Algebra:**Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors.**C****alculus:** Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s theorem, Divergence theorem, Green’s theorem.

**Di****ff****erential Equations:** First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables.

**C****omplex Variables:** Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula,

Taylor series, Laurent series, Residue theorem, Solution integrals.

**P****r****obability and Statistics:** Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis.

**Electric Circuits**

**N****etwork Elements :** Ideal voltage and current sources, dependent sources, R, L, C, M elements; Network solution methods: KCL, KVL, Node and Mesh analysis; Network Theorems: Thevenin’s, Norton’s, Superposition and Maximum Power Transfer theorem; Transient response of dc and ac networks, sinusoidal steady-state analysis, resonance, two port networks, balanced three phase circuits, star-delta transformation, complex power and power factor in ac circuits.

**Electromagnetic Fields**

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law,Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

**Signals and Systems**

Representation of continuous and discrete time signals, shifting and scaling properties, linear time invariant and causal systems, Fourier series representation of continuous and discrete time periodic signals, sampling theorem, Applications of Fourier Transform for continuous and discrete time signals, Laplace Transform and Z transform. R.M.S. value, average value calculation for any general periodic waveform.

**Electrical Machines**

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of synchronous motors; Types of losses and efficiency calculations of electric machines

**Power Systems**

Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch (with and without considering transmission losses), Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐ current, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

**Control Systems**

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady‐state analysis of linear time invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State space model, Solution of state equations of LTI systems

**Electrical and Electronic Measurements**

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

**A****nalog and Digital Electronics**

**Si****m****ple Diode Circuits:** clipping, clamping, rectifiers; Amplifiers: biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers: characteristics and applications; single stage active filters, Active Filters: Sallen Key, Butterwoth, VCOs and timers, combinatorial and sequential logic circuits, multiplexers, demultiplexers, Schmitt triggers, sample and hold circuits, A/D and D/A converters.

**Power Electronics**

**Instrumentation Engineering**

**Engineering Mathematics**

**Linear Algebra:**Matrix algebra, systems of linear equations, consistency and rank, Eigen value and Eigen vectors.

**C****alculus :** Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss and Green’s theorems.

**Di****ff****erential Equations:** First order equation (linear and nonlinear), second order linear differential equations with constant coefficients, method of variation of parameters, Cauchy’s and Euler’s equations, initial and boundary value problems, solution of partial differential equations: variable separable method.

**A****nalysis of Complex Variables:** Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’s series, residue theorem, solution of integrals.

**P****r****obability and Statistics:** Sampling theorems, conditional probability, mean, median, mode, standard deviation and variance; random variables: discrete and continuous distributions: normal, Poisson and binomial distributions.

**N****umerical Methods:** Matrix inversion, solutions of non-linear algebraic equations, iterative methods for solving differential equations, numerical integration, regression and correlation analysis.

**Electricity and Magnetism**

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

**Electrical Circuits and Machines**

**V****oltage and Current Sources:** independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductance and capacitor; transient analysis of RLC circuits with dc excitation.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. transient analysis of RLC circuits with ac excitation.

One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters.

**Si****ngle Phase Transformer :** Equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Types of losses and efficiency calculations of electric machines.

**Signals and Systems**

**Control Systems**

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, PI, PID, cascade, feedforward, and ratio controllers, tuning of PID controllers and sizing of control valves.

**A****nalog Electronics**

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of ideal and practical operational amplifiers; applications of opamps: adder, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier, precision rectifier, active filters, oscillators, signal generators, voltage controlled oscillators and phase locked loop, sources and effects of noise and interference in electronic circuits.

**Digital Electronics**

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, Embedded Systems: Microprocessor and microcontroller applications, memory and input- output interfacing; basics of data acquisition systems, basics of distributed control systems (DCS) and programmable logic controllers (PLC).

**Measurements**

SI units, standards (R,L,C, voltage, current and frequency), systematic and random errors in measurement, expression of uncertainty - accuracy and precision, propagation of errors, linear and weighted regression. Bridges: Wheatstone, Kelvin, Megohm, Maxwell, Anderson, Schering and Wien for measurement of R, L, C and frequency, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

**Sensors and Industrial Instrumentation**

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (variable head, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement. 4-20 mA two-wire transmitter.

**C****ommunication and Optical Instrumentation**

Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, quadrature amplitude, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor, square law detectors and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing. UV-VIS Spectro photometers, Mass spectrometer.

**Mechanical Engineering**

**Engineering Mathematics**

**Matrix algebra, systems of linear equations, eigenvalues and eigenvectors.**

**Linear Algebra:****C****alculus:** Functions of single variable, limit, continuity and differentiability, mean value

theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green’s theorems.

**Di****ff****erential Equations:** First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace's equations.

**C****omplex Variables :** Analytic functions; Cauchy-Riemann equations; Cauchy’s integral theorem and integral formula; Taylor and Laurent series.

**P****r****obability and Statistics:** Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.

**N****umerical Methods:** Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson’s rules; single and multi-step methods for differential equations.

**A****pplied Mechanics and Design**

**E****ngineering Mechanics:** Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange’s equation.

**M****echanics of Materials:** Stress and strain, elastic constants, Poisson's ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

**T****heory of Machines:** Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

**Vi****brations:** Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

**M****achine Design:** Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

**Fluid Mechanics and Thermal Sciences**

**Fluid Mechanics:** Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow.

**H****eat-Transfer:** Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan- Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis

**T****hermodynamics:** Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

**A****pplications:** Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines.

**Materials, Manufacturing and Industrial Engineering**

**E****ngineering Materials:** Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

**C****asting, Forming and Joining Processes:** Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

**M****achining and Machine Tool Operations:** Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming.

**M****etrology and Inspection:** Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM).

**C****omputer Integrated Manufacturing:** Basic concepts of CAD/CAM and their integration tools; add i>le manufacturing.

**Production Planning and Control:** Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing.

**Inventory Control:** Deterministic models; safety stock inventory control systems.

**Operations Research:** Linear programming, simplex method, transportation, assignment, network flaw models, simple queuing models, PERT and CPM.

**PRODUCTION AND INDUSTRIAL ENGINEERING**

**Engineering Mathematics**

Calculus: Functions of single variable, Limit, continuity and differentiability, Mean value

theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives; Line, Surface and Volume integrals; Stokes, Gauss and Green’s theorems.

Differential Equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy’s and Euler’s equations, Initial and boundary value problems, Laplace transforms.

Complex Variables: Analytic functions, Cauchy’s integral theorem, Taylor series.

Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Linear regression, Random variables, Poisson, normal, binomial and exponential distributions.

Numerical Methods: Numerical solutions of linear and nonlinear algebraic equations, Integration by trapezoidal and Simpson’s rules, Single and multi-step methods for differential equations.

**General Engineering**

Engineering Materials: Structure, physical and mechanical properties, and applications of common engineering materials (metals and alloys, semiconductors, ceramics, polymers, and composites – metal, polymer and ceramic based); Iron-carbon equilibrium phase diagram; Heat treatment of metals and alloys and its influence on mechanical properties; Stress-strain behavior of metals and alloys.

Applied Mechanics: Engineering mechanics – equivalent force systems, free body concepts, equations of equilibrium; Trusses; Strength of materials – stress, strain and their relationship; Failure theories; Mohr’s circle (stress); Deflection of beams, bending and shear stresses; Euler’s theory of columns; Thick and thin cylinders; Torsion.

Theory of Machines and Design: Analysis of planar mechanisms, cams and followers; Governors and fly wheels; Design of bolted, riveted and welded joints; Interference/shrink fit joints; Friction and lubrication; Design of shafts, keys, couplings, spur gears, belt drives, brakes and clutches; Pressure vessels.

** Thermal and Fluids Engineering: Fluid mechanics – **fluid statics, Bernoulli’s equation, flow through pipes, laminar and turbulent flows, equations of continuity and momentum, capillary action; Dimensional analysis; Thermodynamics – zeroth, first and second laws of thermodynamics, thermodynamic systems and processes, calculation of work and heat for systems and control volumes; Air standard cycles; Heat transfer – basic applications of conduction, convection and radiation.

**Manufacturing Processes I**

Casting: Types of casting processes and applications; Sand casting: patterns – types, materials and allowances; molds and cores–materials, making, and testing; design of gating system and riser; casting techniques of cast iron, steels, and nonferrous metals and alloys; analysis of solidification and microstructure development; Other casting techniques: Pressure die casting, Centrifugal casting, Investment casting, Shell mold casting; Casting defects and their inspection by non-destructive testing.

Metal Forming: Stress-strain relations in elastic and plastic deformation; von Mises and Tresca yield criteria, Concept of flow stress; Hot, warm and cold working; Bulk forming processes – forging, rolling, extrusion and wire drawing; Sheet metal working processes – blanking, punching, bending, stretch forming, spinning and deep drawing; Ideal work and slab analysis; Defects in metal working and their causes.

Joining of Materials: Classification of joining processes; Principles of fusion welding processes using different heat sources (flame, arc, resistance, laser, electron beam), Heat transfer and associated losses; Arc welding processes - SMAW, GMAW, GTAW, plasma arc, submerged arc welding processes; Principles of solid state welding processes - friction welding, friction stir welding, ultrasonic welding; Welding defects - causes and inspection; Principles of adhesive joining, brazing and soldering processes.

Powder Processing: Production of metal/ceramic powders, compaction and sintering of metals and ceramic powders, Cold and hot isostatic pressing.

Polymers and Composites: Polymer processing – injection, compression and blow molding, extrusion, calendaring and thermoforming; Molding of composites.

**Manufacturing Processes II**

Machining: Orthogonal and oblique machining, Single point cutting tool and tool signature, Chip formation, cutting forces, Merchant’s analysis, Specific cutting energy and power; Machining parameters and material removal rate; tool materials, Tool wear and tool life; Thermal aspects of machining, cutting fluids, machinability; Economics of machining; Machining processes - turning, taper turning, thread cutting, drilling, boring, milling, gear cutting, thread production; Finishing processes – grinding, honing, lapping and super-finishing.

Machine Tools: Lathe, milling, drilling and shaping machines – construction and kinematics; Jigs and fixtures – principles, applications, and design.

Advanced Manufacturing: Principles and applications of USM, AJM, WJM, AWJM, EDM and Wire EDM, LBM, EBM, PAM, CHM, ECM; Effect of process parameters on material removal rate, surface roughness and power consumption; Additive manufacturing techniques.

Computer Integrated Manufacturing: Basic concepts of CAD and CAM, Geometric modeling, CNC; Automation in Manufacturing; Industrial Robots – configurations, drives and controls; Cellular manufacturing and FMS - Group Technology, CAPP.

**Quality and Reliability**

Metrology and Inspection: Accuracy and precision; Types of errors; Limits, fits and tolerances; Gauge design, Interchangeability, Selective assembly; Linear, angular, and form measurements (straightness, flatness, roundness, runout and cylindricity) by mechanical and optical methods; Inspection of screw threads and gears; Surface roughness measurement by contact and non- contact methods.

Quality Management: Quality – concept and costs; Statistical quality control – process capability analysis, control charts for variables and attributes and acceptance sampling; Six sigma; Total quality management; Quality assurance and certification - ISO 9000, ISO14000.

Reliability and Maintenance: Reliability, availability and maintainability; Distribution of failure and repair times; Determination of MTBF and MTTR, Reliability models; Determination of system reliability; Preventive and predictive maintenance and replacement, Total productive maintenance.** Industrial Engineering**

Product Design and Development: Principles of product design, tolerance design; Quality and cost considerations; Product life cycle; Standardization, simplification, diversification; Value engineering and analysis; Concurrent engineering; Design for “X”.

Work System Design: Taylor’s scientific management, Gilbreths’s contributions; Productivity – concepts and measurements; Method study, Micro-motion study, Principles of motion economy; Work measurement – time study, Work sampling, Standard data, PMTS; Ergonomics; Job evaluation and merit rating.

** Facility Design: **Facility location factors and evaluation of alternate locations; Types of plant layout and their evaluation; Computer aided layout design techniques; Assembly line balancing; Materials handling systems.

**Operations Research and Operations Management**

** Operation Research: Linear programming – **problem formulation, simplex method, duality and sensitivity analysis; Transportation and assignment models; Integer programming; Constrained and unconstrained nonlinear optimization; Markovian queuing models; Simulation – manufacturing applications.

** Engineering Economy and Costing: **Elementary cost accounting and methods of depreciation; Break-even analysis; Techniques for evaluation of capital investments; Financial statements; Activity based costing.

** Production Control: **Forecasting techniques – causal and time series models, moving average, exponential smoothing, trend and seasonality; Aggregate production planning; Master production scheduling; MRP, MRP-II and ERP; Routing, scheduling and priority dispatching; Push and pull production systems, concepts of Lean and JIT manufacturing systems; Logistics, distribution, and supply chain management; Inventory – functions, costs, classifications, deterministic inventory models, quantity discount; Perpetual and periodic inventory control systems.

** Project Management: **Scheduling techniques – Gantt chart, CPM, PERT and GERT.

**Textile Engineering and Fibre Science**

**EN****GI****NEER****I****N****G MATHEMATICS**

Linear Algebra: Matrices and Determinants; Systems of linear equations; Eigenvalues and Eigenvectors.

Calculus: Limit, continuity and differentiability; Successive differentiation; Partial differentiation; Maxima and minima; Errors and approximations; Definite and improper integrals; Sequences and series; Test for convergence; Power series; Taylor series.

Differential Equations: First order linear and non-linear differential equations; Higher order linear differential equations with constant coefficients; Euler-Cauchy equation; Partial differential equations; Wave and heat equations; Laplace’s equation.

Probability and Statistics: Random variables; Poisson, binomial and normal distributions; Mean, mode, median, standard deviation; Confidence interval; Test of hypothesis; Correlation analysis; Regression analysis; Analysis of variance; Control charts.

Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; Numerical integration by trapezoidal and Simpson’s rules; Single-step and multi-step numerical methods for differential equations.

**T****ex****tile Fibres**

Classification of Textile Fibres; Essential requirements of fibre forming polymers; Gross and fine structures of natural fibres like cotton, wool, silk; Introduction to bast fibres; Properties and uses of natural and man-made fibres including carbon, aramid and ultra-high molecular weight polyethylene fibres; Physical and chemical methods of fibre and blend identification and blend analysis.

Molecular architecture, amorphous and crystalline phases, glass transition, plasticization, crystallization, melting, factors affecting Tg and Tm; Polymerization of nylon-6, nylon-66, poly (ethylene terephthalate), polyacrylonitrile and polypropylene; Melt spinning processes for PET, polyamide and polypropylene; Preparation of spinning dope; Principles of wet spinning, dry spinning, dry-jet-wet spinning and gel spinning; Spinning of acrylic, viscose and other regenerated cellulosic fibres such as polynosic and lyocell; Post spinning operations such as drawing, heat setting, tow-to-top conversion;Spin finish composition and applications; Different texturing methods.

Methods of investigating fibre structure such as density, x-ray diffraction, birefringence, optical and electron microscopy such as SEM and TEM, I.R. spectroscopy, thermal methods such as DSC, DMA, TMA and TGA; Structure and morphology of man-made fibres; Mechanical properties of fibres; Moisture sorption of fibres; Fibre structure-property correlation.

**Y****a****rn Manufacture, Yarn Structure and Properties**

Principles of ginning; Principles of opening, cleaning and blending; Working principles of modern blow room machines; Fundamentals of carding; Conventional vs. modern carding machine; Card setting; Card clothing; Periodic mass variation in card sliver; Card auto leveller;

Principles of roller drawing; Roller arrangements in drafting systems; Periodic mass variation in drawn sliver; Draw frame auto leveller; Principles of cotton combing; Combing cycle and mechanisms; Recent developments in combing machine; Principles of drafting, twisting, and bobbin building in roving formation; Modern developments in roving machine; Principles of drafting, twisting and cop building in ring spinning; Causes of end breakages; Modern developments in ring spinning machine; Working principles of ring doubler and two-for-one twister; Relationship between single yarn twist and folded yarn twist; Principles of compact, rotor, air-jet, air-vortex, friction, core, wrap and twist-less spinning processes.

Influence of fibre geometry, fibre configuration and fibre orientation in yarn; Fibre packing density of yarn; Yarn diameter; Yarn twist and its relation to yarn strength; Helical arrangement of fibres in yarns; Yarn contraction; Fibre migration in yarns; Stress-strain relation in yarn; Mass irregularity of yarn; Structure-property relationship in ring, compact, rotor, air-jet and friction spun yarns.

**F****a****bric Manufacture, Structure and Properties**

Principles of winding processes; Classification of winding methods; Patterning mechanism; Yarn clearers and tensioners; Different systems of yarn splicing; Warping objectives and classification; Different types of warping creels; Features of beam and sectional warping machines; Different sizing systems; Sizing of spun and filament yarns;Drawing-in process; Principles of pirn winding.

Primary and secondary motions of loom; Shedding motion; Positive and negative shedding mechanisms; Type of sheds; Tappet, dobby and jacquard shedding; Weft insertion; Mechanics of weft insertion with shuttle; Shuttle picking and checking; Beat-up; Kinematics of sley; Loom timing diagram; Cam designing; Effect of sley setting and cam profile on fabric formation; Take- up and Let-off motions; Warp and weft stop motions; Warp protection; Weft replenishment; Principles of weft insertion systems of shuttle-less weaving machines such as projectile, rapier, water-jet and air-jet; Principles of functioning of multiphase and circular looms; Types of selvedges.

Basic woven fabric constructions and their derivatives; Crepe, cord, terry, gauze, leno and double cloth constructions; Drawing and lifting plans.

Fundamentals of weft knitting; Classification of weft knitting technologies; Weft knitted constructions such as plain, rib, interlock and purl; Different knit stitches such as loop, tuck and float.

Principle of warp knitting; Classification of warp knitting technologies; Swinging and shogging motion of guide bar; Basic warp knit construction such as pillar, tricot, atlas, inlay and nets.Fibre preparation processes for nonwovens; Web formation and bonding processes;Spun-bonding and melt-blowing technologies; Applications of nonwoven fabrics.

Principles of braiding; Type of braids; Maypole braiding technology.

Peirce’s equations for plain woven fabric geometry; Elastic a model of plain-woven fabric; Thickness, cover and maximum set of woven fabrics; Geometry of plain weft knitted loop; Munden’s constants and tightness factor for plain weft knitted fabrics; Geometry of tubular braids.

**Textile Testing**

Sampling techniques for fibres, yarns and fabrics; Sample size and sampling errors.

Moisture in textiles; Fibre length, fineness, crimp, maturity and trash content; Tensile testing of fibres; High volume fibre testing.

Linear density of sliver, roving and yarn; Twist and hairiness of yarn; Tensile testing of yarns; Evenness testing; Fault measurement and analysis of yarns.

Fabric thickness, compressibility, stiffness, shear, drape, crease recovery, tear strength, bursting strength, pilling and abrasion resistance; Tensile testing of fabrics; Objective evaluation of low stress mechanical characteristics; Air permeability; Wetting and wicking; Water-vapour transmission through fabrics; Thermal resistance of fabrics.** **

**Chemical Processing**

Impurities in natural fibre; Singeing; Chemistry and practice of preparatory processes for cotton; Preparatory processing of wool and silk; Mercerization of cotton; Preparatory processesfor manmade fibres and their blends; Optical brightening agent.

Classification of dyes; Dyeing of cotton, wool, silk, polyester, nylon and acrylic with appropriate classes of dyes; Dyeing of polyester/cotton and polyester/wool blends; Dyeing machines; Dyeing processes and machines for cotton knitted fabrics;Dye-fibre interaction;Introduction to thermodynamics and kinetics of dyeing; Brief idea about the relation between colour and chemical constitution; Beer-Lambert’s law;Kubelka-Munk theory and its application in colour measurement; Methods for determination of wash, light and rubbing fastness.

Methods of printing such as roller printing and screen printing; Preparation of printing paste; Various types of thickeners; Printing auxiliaries; Direct styles of printing of (i) cotton with reactive dyes, (ii) wool, silk, nylon with acid and metal complex dyes, (iii) polyester with disperse dyes; Resist and discharge printing of cotton, silk and polyester; Pigment printing; Transfer printing of polyester; Inkjet printing; Printing faults.

Mechanical finishing of cotton; Stiff, soft, wrinkle resistant, water repellent, flame retardant and enzyme (bio-polishing) finishing of cotton; Milling, decatizing and shrink resistant finishing of wool; Antistatic and soil release finishing; Heat setting of synthetic fabrics; Minimum application techniques.

Pollution control and treatment of effluents.